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Abstract—In network tomography, we seek to infer link status
parameters (such as delay) inside a network through end-to-end
measurements at (external) boundary nodes. As can be expected,
such approaches generically suffer from identifiability problems;
i.e., even with the maximum amount of data obtainable from
such end-to-end probes, status of links in a large number of
network topologies is not identifiable. A basic result charac-
terizing network topologies which are not identifiable under
end-to-end probe sending is first derived. Then, we introduce
an innovative approach based on linear network coding that
overcomes this problem. We provide sufficient conditions on
network coding coefficients and training sequence under which
any logical network is guaranteed to be identifiable. In addition,
we show that it is possible to locate any congested link inside a
network during an arbitrary amount of time by increasing size of
transmitted packets, leading to raise in complexity of the method.
Further, given an appropriate choice of training sequence, a
probability of success is provided for a random network. OPNET
is used to implement the concept and confirm the validity of
the claims - simulation results show that the network coding
method correctly detects the congested link, while probing based
algorithms fail.

Index Terms—Network Tomography, Network Coding, Graph
Theory, Finite Field

I. INTRODUCTION

Monitoring of link properties (delay, loss rates etc.) within
the Internet has been stimulated by the demand for network
management tasks such as fault and congestion detection. This
would help network engineers and Internet Service Providers
(ISP) to keep track of network utilization and performance.
The need for accurate and fast network monitoring method
has increased further in recent years due to the complexity of
new services (such as video-conferencing, Internet telephony,
and on-line games) that require high-level quality-of-service
(QoS) guarantees. In 1996, the term network tomography was
coined by Vardi [1] to encompass these class of approaches
that seek to infer internal link parameters and identify link
congestion status.

Current network tomography methods can be broadly cate-
gorized as follows:
• Node-oriented: These methods are based on cooperation

among network nodes on an end-to-end route using
control packets. For example, active probing tools such
as ping or traceroute, measure and report attributes of
the round-trip path (from sender to receiver and back)
based on separate probe packets[2]. The challenges of
such node-oriented methods arise from the fact that many
service providers do not own the entire network and hence
do not have access to the internal nodes[3].

• Path-oriented: In networks with a defined boundary, it
is assumed that access is available to all nodes at the edge

Fig. 1. In end-to-end measurement methods, probes are sent from one
boundary node to the others.

(and not to any in the interior). A boundary node sends
probes to all (or a subset) of other boundary nodes to
measure packet attributes on the path between network
end-to-end points. Clearly, these edge-based methods do
not require exchanging special control messages between
interior nodes. The primary challenge of such end-to-end
probe data [4],[5] to estimate link level status is that of
identifiability, as will be discussed later.

As the Internet evolves towards decentralized, uncooper-
ative, heterogeneous administration and edge-based control,
node-oriented tools will be limited in their capability. Accord-
ingly, in this work we only focus on path-oriented methods
which have recently attained more attention due to their ability
to deal with uncooperative and heterogeneous (sub)networks.

In path-oriented network tomography, probes are sent be-
tween two boundary nodes on pre-determined routes; typically
these are the shortest paths between the nodes. For some
parameters like delay (which is the main concern in this
manuscript), an additive linear model adequately captures the
relation between end-to-end and individual link delays, and
can be written as [6], [7]

y = Rx (1)

where x is the L × 1 vector of individual link delays.
The J × L binary matrix R denotes the routing matrix for
the network graph corresponding to the measurements and
y ∈ RJ is the measured J-vector of end-to-end path
delays. Solution approaches based on Eq. (1) can be largely
categorized as follows:

1) Deterministic models: Here the link attributes, such as
link delay, are considered as unknown but constant; the
goal of network tomography is to estimate the value of
those constants. Since the link delay is typically time
varying in any network, this approach is suitable for
periods of local ‘stationarity’ where such an assumption
is valid.

2) Stochastic model: Here, it is supposed that the link
vector x is specified by a suitable probability distri-
bution. The goal of network tomography is to identify



FIROOZ et al.: LINK STATUS MONITORING USING NETWORK CODING 2

the unknown parameters of the probability model. For
example, many works assume the link attributes follow
a Gaussian distribution or an exponential distribution [1-
3]. Further, the observations are assumed to occur in the
presence of an independent additive noise or interference
term ε [8]; thus the observation equation is modified to
y = Ax + ε.

There exist challenges with both modeling approaches.
Our work falls within the class of deterministic approaches.
Stochastic approaches in the literature are Bayesian in nature,
requiring a prior distribution. If incorrectly chosen, this lead
to biases in the resulting estimates. Further, stochastic models
are usually more computationally intensive than deterministic
ones [4]. On the other hand, deterministic models suffer
from generic identifiability problems; this will be discussed
subsequently in more detail. In Eq. (1), typically, the number
of observations J ¿ L, because the number of accessible
boundary nodes is much smaller than number of links in-
side the network. Thus the number of variables in Eq. (1)
to be estimated is much larger than number of equations
(rank(R) < L)[8] in the linear model, leading to generic
non-uniqueness for any solution to Eq. (1),i.e., inability to
uniquely specify which links are congested [9].

Definition: A network is said to be identifiable for a given
monitoring scheme (choice of sources, receivers, whether
intermediate nodes collaborate) if congestion status of all links
inside the network can be inferred from the measurements at
the receiver(s) [10].

For example consider the network in Figure 1. Throughout
this manuscript, boundary nodes are depicted as solid circles
while intermediate nodes are presented using dashed circle.
Network in Figure 1 has three boundary nodes, one intermedi-
ate node and three links. Suppose probes are transmitted from
n1 to n3 and n4. A probe sent from n1 to n3 goes through
links l1 and l2 and experiences a total delay dl1+dl2 . Similarly,
probe sent from n1 to n4 contains the delay of dl1 +dl3 . This
can be written in the following set of linear equations:

[
Dn1Ãn3

Dn1Ãn3

]

︸ ︷︷ ︸
measurement vector

=
[

1 1 0
1 0 1

]

︸ ︷︷ ︸
routing matrix

·



dl1

dl2

dl3




︸ ︷︷ ︸
delay vector

(2)

Let us assume that the only desired solutions in this frame-
work are binary vectors x whereby xi = 1(0) indicates if the
corresponding link is congested (not congested). While this is
a simplifying assumption - that only congested link experience
significant delay and is indicated by a corresponding entry
of large magnitude in x, whereas the other entries of x
are relatively small, corresponding to low delays for non-
congested links, it has been adopted for modeling in the
literature, notably by [11].

Even for such an elementary network, it is not possible to
disambiguate the following ‘congestion’ link states: (a) x =
[1 0 0]T where only link l1 is congested from (b) x = [0 1 1]T

indicating both links l2, l3 are congested. For larger networks,
it is evident that such lack of identifiability is generic.

(a)

(b)
1 Ã 2
1 Ã 3
1 Ã 5
2 Ã 3
2 Ã 5
3 Ã 5




1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 1 0 0
0 0 0 1 1 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1




(c)
Fig. 2. An example of graph where end-to-end probe sending methods fail
(a)Network topology (b)Spanning trees rooted at boundary nodes (c)routing
matrix.

A potential solution to the above is to limit the maximum
number of simultaneously congested links inside the network.
This is reasonable in situations that the probability of having
k congested link in the network is proportional to pk where
p is the probability of a link being congested1. For a well-
designed network, p is sufficiently small, implying that pk can
be considered negligible beyond some value of k. This allows
an important side constraint to be imposed on any solution
to Eq. 1 - namely, we are interested in binary vectors with
at most k non-zero entries in x. In this work, we concentrate
on k = 1; i.e. only a single congested link exists inside the
network. This is the simplest possible class of identifiability
problems (compared to the general and more difficult k > 1
case) and yet is sufficiently challenging as our investigations
will show.

Xi et. al. in [12] provided conditions on the network routing
matrix (R) such that a single congested link is detectable by
end-to-end delay measurements. We restate the theorem below
for reference.

Theorem 1: [12] End-to-end probe based measurements
can detect a unique congested link in a network if and only
if there are no two identical columns in the network routing
matrix.

As illustration, consider the network graphs in Figure 2 and
suppose that one of the links l2 or l7 is congested (and all

1This is consistent with the assumption that link failures are independent.
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others are uncongested). Figure 2-b shows all the possible
shortest paths to all other boundary nodes starting with a
source (boundary) node in the network. Obviously, a probe
either goes through both l1 and l7 or neither. It is now evident
that it is not possible to identify which of l2 or l7 is congested
link using end-to-end measurement. The routing matrix of the
network is given in 2-C. Consistent with Theorem 1, it can
be seen that this network is unidentifiable since columns 4
and 5 are identical. However suppose that in place of shortest
path routing, we are allowed to route packets from n1 to n2

through a longer path that includes l2, l4. It is now possible to
distinguish between congestion status of links l2 and l7. This
exemplifies an intrinsic limitation for end-to-end measurement
methods based on shortest path routes - probes transmitted
along such paths contain only minimum information. If it was
possible to exchange probes between boundary nodes via other
(non-shortest) paths, it would improve network identifiability.
However, this is often impractical in path-oriented methods
that have fixed routing tables. Thus we accordingly propose
a new approach - based on network coding - to achieve the
same purpose of enhanced identifiability. Thanks to broadcast
nature of network coding, a transmitted probe will traverse
almost every paths between two boundary nodes.

We will show that employing network coding at intermedi-
ate nodes results in a novel link monitoring scheme that is able
to identify a congested link in a network graph deemed un-
identifiable using end-to-end probe based observation methods
(such as network in Figure 2). In this method, a boundary
(source) node sends a training sequence of q-bit packets to
another boundary node (destination). These packets traverse
over multiple paths between source and destination. By trans-
mitting different probes at different periods of time and by
sweeping over all boundary nodes, a collection of received
packets is obtained that contains sufficient information about
all internal network links. The primary design challenge is
to determine a) the length of training sequence and b) size of
network coding packets q necessary to unambiguously identify
any congested link in the network.

Network coding has received considerable attention in re-
cent years for its potential for achieving the theoretical upper
bound (max-flow, min-cut) of network resource utilization via
the introduction of coding concepts at the network layer. It has
been shown that with simple random linear coding in place of
the usual forwarding, system throughput can be increased in
several canonical network topologies. As a result, deployment
of network coding in large scale networks is anticipated in
future. Our intent in this work is different: to redirect network
coding concepts towards a novel application, that of network
status monitoring for graphs hitherto assumed un-identifiable
by other means.

Our specific contributions in this work are summarized next:
1) We provide conditions under which network coding is

able to locate a single congested link in a network.
Specifically, we show that our approach succeeds for
any logical network - i.e. a network containing no nodes
with degree two [10].

2) We provide a relation between length of training se-
quence needed (time to identifiability) and size of net-

work coding packets (complexity of method) to establish
a fundamental speed/compexity tradeoff.

3) We provide a lower bound for probability of success of
our method in a random graph.

4) We implement our proposed method within OPNET
simulator - the first implementation of network coding
within actual network simulator to the best of our
knowledge - and demonstrate the validity of our ideas.

The paper is organized as follows: In Section II, we develop
the principles for applying network coding to tomography for
an ideal (delay-free) network. In Section III, we describe how
the above scheme can be adapted to the practically impor-
tant scenario of networks with finite delays. Implementation
of linear network coding (LNC) for such a network in a
commercially available simulator (OPNET) is described in
Section IV for schemes proposed in Section II. The simulation
results confirm that LNC correctly detects the congested link
in situations where standard probing based algorithm fails. The
paper concludes with reflections on future work in Section V.
Appendix A provides a brief summary of relevant Galois finite
field theory. Proofs of theorems can be found in Appendix B.
A glossary of definitions of all symbols used in the manuscript
is given in Appendix C.

Notations: We use bold capitals (e.g. R) to represent matri-
ces and bold lowecase symbols (e.g. y) for vectors. The i-th
entry of a vector x is denoted by xi. A set of sets is denoted by
a calligraphic capitalized symbol, e.g. P and the i-th element,
which is itself a set, is denoted by regular capital symbol with
i as superscript (e.g. P i).

II. TOMOGRAPHY WITH LINEAR NETWORK CODING

In principle, Linear Network Coding (LNC) is a block code
operating on IP layer frames, implemented by routers inside
the network. The coding is conducted over the finite field
F2q whereby each coded symbol can be represented by q-bits
within an IP layer frame. For the sake of simplicity, we initially
consider a delay-free network as in [13], [14], [15] in which
information reaches every node instantaneously; our method
is readily adapted to a real network where links have finite
(non-zero) delay. Linear Network Coding has been exploited in
[16] and [17] to infer network topology. Consistent with these
approaches, we assume that in addition to LNC coefficients at
each node, destination nodes are aware of the entire network
topology. Ho et. al. [18] consider network monitoring using
network coding. However, their approach is based on multicast
tree to find the congested link which implies that the method is
restricted to probing using only a unique path between source-
destination pairs. We shall relax this assumption in our work.

A. Formulation

We model a communication network consisting of bidirec-
tional links connecting transmitters, switches, and receivers
as an undirected graph G(V,E) where V is a set of vertices
and E is a set of edges. Only networks with logical topology
are considered here; i.e. degrees of all (interior) nodes in the
network (except sources and destinations) are greater than
or equal to three, since networks with degree 2 nodes are
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Fig. 3. In network coding, output signal is a linear combination of inputs:
Yo = γ1Y1 + γ2Y2 + γ3Y3.

well-known to be un-identifiable by any end-to-end probing
techniques.

In LNC [15], intermediate nodes linearly combine packets
received on their incoming edges and broadcast the result
over all outgoing edges. The coded symbols are transmitted
as vectors of bits of length q, represented as an element of
the finite field F2q . The length of vectors is equal in all
transmission and all links are assumed to be synchronized [19],
[20] with zero delay.

As noted in [14], network coding presumes directed acyclic
graphs. Gjoka et. al. in [10] propose an algorithm that converts
a given graph G(V,E) with a set of sources S to an acyclic
directed graph with the same sets of vertices and edges.
However, this algorithm doesn’t allow destination nodes to be
pre-specified. This makes their algorithm inapplicable for our
purpose, since in network tomography, we have access only
to pre-determined boundary nodes. Converting an undirected
graph to an acyclic directed graph with given sets of sources
and destinations is beyond the scope of this paper. Hence, we
shall thus presume that for each undirected graph G(V,E),
there exists a corresponding acyclic directed version; all results
in this manuscript are assumed to be based on such a directed
and acyclic graph with known topology.

B. Network Code Design
Consider a source s ∈ V and a destination d ∈ V pair in

the network. For a given network graph G(V,E), all nodes
apart from the source-destination pair v ∈ V −{s, d}, support
network coding. The signal Yl on an outgoing link l ∈ E
for node v is a linear combination (in finite field F2q ) of the
signals Yj on the incoming links of v (see Figure 3), i.e.,

Yl =
∑

{j∈E|d(j)=v}
γjYj , v = o(l), l ∈ E (3)

where o(l) and d(l) represent origin and destination nodes
of link l ∈ E, respectively. Operations (addition and multi-
plication) in Eq. (3) are in finite field F2q . A self-contained
summary is given in Appendix-A; for more details, readers
should refer, for example, to [21].

For each node v ∈ V − {s, d}, P(v) is defined as the
collection of all paths from s to v in the directed graph
G(V, E); it’s i-th element P i(v) is the i-th path between s
and v. Suppose there are total of N paths from source s to
destination d, i.e., N = |P(d)|. Further suppose that the source
s has K outgoing links e1, e2, ..., eK and the symbol αk is sent
over the k-th outgoing link ek, k = 1, 2, . . . , K. Let Pek

(d)
denote the collection of paths from source to destination that
share the kth outgoing link from the source, i.e.,

Pek
(d) = {P i(d) : ek ∈ P i(d) s.t. o(ek) = s} (4)

In fact sets Pek
, k = 1, ..., K are partitions of P(d); i.e.

P(d) = ∪K
k=1Pek

(d) and Pei
(d) ∩ Pej

(d) = φ, i 6= j.
If the source sends a symbol α ∈ F2q over P i(d), the

destination would receive

y[n] = α
∏

l∈P i(d)

γl (5)

= αβi(G) (6)

where γl ∈ F2q is the coefficient of the link l on path P i(d)
and βi(G) ∈ F2q is the product of LNC coefficients of all
links lying on the i-th path from source to destination, P i(d).
The argument G in βi(G) highlights the dependency of βi

on topology G. Now, suppose s sends the symbol αk[n]
over the k-th outgoing link ek, k = 1, . . . , K in time slot
n (which implies in turn that αk[n] traverses over all paths
P i(d) ∈ Pek

). Since network coding is a linear operation,
the destination receives, by (6) the following super-imposed
symbol in time slot n :

y[n] =
K∑

k=1

αk[n].
∑

P i(d)∈Pek

∏

l∈P i(d)

γl (7)

Eq. (7) can be rewritten as the vector product

y[n] = αT [n]β(G) (8)

where

α′T
k [n] = [

|Pek
| times︷ ︸︸ ︷

αk[n]αk[n] . . . αk[n]] (9)

αT [n] = [α′T
k [n]]Kk=1 (10)

and
βT (G) = [

∏

l∈P i(d)

γl]Ni=1 = [βi(G)]Ni=1 (11)

We call β(G) the total network coding vector of the graph
G; the i-th entry of β is the product of LNC coefficients of all
nodes lying on the i-th path from source to destination, P i(d).
Note that α′

k[n] is a repeated length-|Pek
| vector comprising

of the symbol αk[n] (sent over the k-th outgoing link of the
source at n-th time slot). If M symbols that constitute a packet
are sent in M time slots, the destination receives:

yM×1 = AM×N β(G)N×1 (12)

where A is a M × N matrix whose nth row is αT [n],
the training symbols sent in time slot n (10). It follows by
construction that columns of A corresponding to Pek

are
equal, for k = 1, 2, ..., K.

Now, if a link is severely congested, packets are significantly
delayed and assumed lost at the destination. Hence, we can
model the network with link l in congestion state by its edge
deleted subgraph denoted by Gl(V,El) (for precious definition
of an edge deleted subgraph refer to [22]). In the other words,
for the original network G(V, E), Gl(V, El) represents the
same network with link l is congested such that packets sent
on that link are dropped. The total network coding vector of
the graph Gl, denoted by β(Gl), is related to the vector β(G),
defined in (11) as follows. Clearly, if the congested link doesn’t
belong to i-th path from source to destination, P i(d), it will
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Fig. 4. A network with two boundary nodes and two interior nodes which
contains three paths from source (node S) to destination (node D). Linear
network coding coefficient of each link is shown in a box next to the link.

not affect packets going through those paths. That means the
i-th entry of β(Gl) equals i-th entry of β(G) and it is zero if
P i(d) includes the deficient link, i.e.,

βi(Gl) =

{
βi(G) if l /∈ P i(d)
0 o.w.

(β(Gl))T = [βi(Gl)]i=N
i=1 (13)

where βi(G) is the i-th entry of β(G) (or equivalently
product of coefficients of all links on path P i(d)) defined in
(11) and l is the congested link.

Now suppose, s sends αk[n] over path Pek
in time slot n

given link l is congested. The destination node receives

yl[n] =
K∑

k=1

αk[n].
∑

P i(d)∈Pek

β(Gl)i (14)

in time slot n. Using (13), (10) and (14), the following vector
form equation can be derived when link l is in congestion:

yl[n] = αT [n].β(Gl) (15)

Sending probe packets in M contiguous time slots results
in M linear equations which can be written as:

yl
M×1 = AM×N β(Gl)N×1 (16)

where yl is vector of symbols observed at the destination in
M time slots with link l congested. Comparing equations (12)
and (16) shows that for given matrix A, the received symbols
change in response to link congestion. In the next subsection
we will prove that this occurs if the network coding vector of
the graph G are chosen to satisfy certain conditions, leading
to the potential for identifying the congested link. We next
provide an illustrative example.

Example 1: Consider the topology in Figure 4 that consists
of 4 nodes and 3 paths between the source and destination.
The source has two output links, e1 and e2. Hence, using (13),
Pe1 and Pe2 are:

P = {P 1, P 2, P 3}
Pe1 = {P 1, P 2}

Pe2 = {P 3}
where the end-to-end paths P 1, P 2, P 3 between the source-
destination are as defined in Figure 4.

Fig. 6. Ge1 : link e1 is congested and therefore node n1 no longer receives
packets from e1. Dashed arrow represents deleted link from network G.

Suppose α1 and α2 traverse over e1 and e2 respectively.
Further, suppose symbols are from F22 implying they are 2
bits long. In that case, the output of each intermediate node
and the destination is depicted in Figure 5. Since the network is
considered to be delay-free, all nodes receive their information
instantaneously.

From Figure 5, the received symbol at destination is

y[n] = (α1 × (1× 1 + 1× 2× 2)) + (α2 × (3× 2))
= 2α1 + α2

As defined in (6), βi(G) is defined as product of coefficients
of all links on path P i(d). For example β2(G) is as follows:

β2(G) = 1× 2× 2 = 3 (17)

where the operation is over the finite field F22 (refer to
Appendix A).

From Equations (11) and (10), the vector α and total
network coding vector β are obtained as:

αT =
[

α1 α1 α2

]

β(G) =
[

1 3 1
]T

where α1 and α2 are two symbols in F22 .
For example, suppose at time slot 1, the source in Figure 4

sends symbols α1 = 1 ∈ F22 and α2 = 2 ∈ F22 , respectively.
At time slot 2, it transmits α1 = 3 and α2 = 3. In this case,
(12) becomes:

[
y1

y2

]
=

[
1 1 2
3 3 3

]

︸ ︷︷ ︸
training sequence A

.




1
3
1




︸ ︷︷ ︸
β(G)

=
[

0
2

]

︸ ︷︷ ︸
received symbols

(18)

Now suppose link e1 is congested; then Ge1 depicted in
Figure 6, represents the graph model for this case. As defined
in (13), for edge deleted subgraph Ge1 , the total network
coding vector is now given by

β(Ge1) =
[

0 0 1
]T

The first and second entries of β(Ge1) are zero because e1 ∈
P 1 and e1 ∈ P 2 (refer to Eq. (13)). For the same symbols
sent by source in case of congested link e1, the destination
receivers
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(a) (b) (c) (d)
Fig. 5. Output of each intermediate node when source sends symbols α1 and α2 over its outgoing links. For delay-free network this is instantaneous.

[
y1

y2

]
=

[
1 1 2
3 3 3

]

︸ ︷︷ ︸
training sequence A

.




0
0
1




︸ ︷︷ ︸
β(Ge1 )

=
[

2
3

]

︸ ︷︷ ︸
received symbols

(19)

which is different from the case of no link failure as in
(18). For the same transmitted symbols, Table I contains the
received symbols at destination for all cases of single link
congestion in the network. Such a table may then be used
as a lookup to locate/identify the congested link inside the
network.

Congested link None e1 e2 l1 l2 l3
1st time slot 0 2 2 3 1 1
2nd time slot 2 3 1 0 1 3

TABLE I
SYMBOLS RECEIVED AT DESTINATION FOR TOPOLOGY IN FIGURE 4 WITH

TRAINING SEQUENCE TRANSMITTED IN TWO TIME SLOTS GIVEN IN
EQ.(18)

For q = 2, each received symbol at the destination belongs
to the symbol set {0, 1, 2, 3} representing the elements of F22 .
Therefore, for 2-bit long network coding, in each transmission
(in one time slot) received symbol conveys only 4 different
values. On the other hand, there are five links in the network
which means receiver has to distinguish between six different
states: single link congestion for each of the five links and no
congestion case. These observations leads to the fact that for
q = 2, the number of transmissions required in this simple
network cannot be less than two time slots.

It follows that in general, the number of transmission time
slots required depends on the choice of q, which can be treated
as a design variable. For example with q = 3, the topology in
Figure 5 is identifiable by transmission in just one time slot
with α1 = 1 and α2 = 4. Table III shows received symbol
at destination for each link congestion state in this case. We
formalize this later in Theorem 4.

Congested link None l1 l2 l3 l4 l5
1st time slot 6 4 2 5 7 1

TABLE II
SYMBOLS RECEIVED AT DESTINATION FOR TOPOLOGY IN FIGURE 5 WITH

TRAINING SEQUENCE TRANSMITTED IN ONE TIME SLOT A = [1 1 4]

¤

C. Link Identifiability Results

As explained via the example above, received symbols at the
destination change in the event of a link failure. The following
theorem describes the conditions on training sequence (A)
and LNC coefficients, under which there exists a one-to-one
correspondence between link congestion states and received
symbols at the destination.

Theorem 2: Consider an acyclic, directed and connected
graph G(V, E), with a source- destination pair s ∈ V, d ∈ V .
Let N be the number of paths from node s to d, and K
the number of outgoing links of s (equivalently, the degree
of s). Suppose each intermediate node j ∈ V − {s, d} has
fixed network coding coefficients and the total network coding
vector for the graph G is βN×1. Let AM×N = [aij ] be
constructed from the training symbols sent over N different
paths from source to destination over M time slots. Then, for
M ≥ K, there exists a matrix A and vector β such that the
following conditions hold:

1 For each subgraph Gl(V,El), Aβ 6= Aβ(Gl)
2 For each pair of subgraphs Gl1(V, El1) and Gl2(V,El2),

Aβ(Gl1) 6= Aβ(Gl2)
Proof: See Appendix.
The theorem provides sufficient conditions that guarantees

identifiability of any logical topology G(V,E) using network
coding under certain conditions on the training sequence
and total LNC vector. Under these sufficient conditions, the
congestion states corresponding to different single link failures
results in different symbols received at destination. Therefore,
by having a simple lookup table, it is possible to identify the
congested link in any logical network.

Corollary 3: Given an acyclic, directed and connected
graph G(V, E) with source node s and destination node d
where s has K outgoing links and the matrix AM×N of
training symbols as above; then rank(A) = K.

Theorem 2 talks about possibility of using network coding
in the application of link monitoring when number of time
slots (M ) is greater or equal to number of outgoing links of
the source (K). However, by increasing the number of bits
assigned to network coding coefficients, it is possible to locate
a failure link using fewer number of time slots.

Theorem 4: Assume an acyclic, directed and connected
graph G(V ;E) with source-destination pair s ∈ V and d ∈ V
as before. Let the K outgoing links of s be represented by
e1, e2, . . . eK . Let Ni be total number of paths from s to d that
starts with ei, i.e.,

∑K
i=1 Ni = N . Assume q bits per symbol

are used in network coding and M is number of time slots used
to send training sequence. Further, assume Z = {1, 2, . . . , K}
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Fig. 7. A network with 5 nodes and five paths, N=5, paths from source to
destination. Source has K=3 outgoing links. It is possible to locate a failure
link in this network by sending training sequence in 2 time slots if q, number
of bits in NC coefficients, are greater than 3.

and ZM is the collection of all partitions of Z with size M ;

ZM = { {H1,H2, ...,HM}| ∪M
i=1 Hi = Z}

Then G(V ; E) is identifiable using NC in field F2q if q satisfies
the following inequality:

q ≥ min
{Hi,i=1,...,M}∈ZM

max
i

∑

j∈Hi

Nj (20)

Proof : See Appendix.
Theorem 4 provides a tradeoff between number of time

slots for training sequence (speed of the method) and size
of network coding coefficient (complexity) to make a network
G(V, E) identifiable. In other words, by increasing complexity
of the method (increasing q) it is possible to save some time
slots (decrasing M ). The following example further illustrates
the above theorem.

Example 2: Consider the topology in Figure 7 that consists
of 4 paths between the source and destination; i.e. N = 4.
Source has 3 outgoing links, K = 3, and using the definition
of Ni we have, N1 = 2, N2 = 1, N3 = 1. Suppose we want
to locate a failure link by sending symbols from source to
destination in 2 time slots, i.e. M = 2. Theorem 4 helps us find
the minimum number of bits q, that guarantees identifiability
in Figure 7.

Let Z = {1, 2, 3}. Since M = 2, we enumerate all the
2-partitions of Z as given below:

Z2 = { { {1}, {2, 3}}, { {2}, {1, 3}}, { {3}, {1, 2}} } (21)

The outer maximization in Theorem 4 is over {N1 =
2, (N2 + N3) = 3} which is 3; our network is found to be
identifiable with M = 2 and q ≥ 3.

¤
As mentioned before, Theorem 4 implies that increasing

the number of time slots used for identifiability of a network
G(V, E) decreases number of bits per symbol for NC coef-
ficients. If number of bits of network coding coefficients are
large enough, it is even possible to locate a congested link
in one time slot. The following two corollaries states these
observations more precisely:

Corollary 5: Suppose G(V,E) is identifiable using network
coding with q1 bits per symbol and training sequence in M1

time slots. Then G is identifiable in M2 > M1 time slots using
NC values having q2 bits per symbol where q2 ≤ q1.

Corollary 6: It is possible to locate a congested link in
network G(V,E) in one time slot, if q number of bits assigned
to LNC is greater than or equal to total number of paths
between source and destination; i.e. q ≥ N .

In all the results thus far, we have assumed that the network
coding coefficients are fixed and chosen so as to satisfy
the identifiability conditions. What if the nodes choose the
LNC coefficients randomly? In that case, identifiability can be
described as a random event. The following theorem provides
a lower bound for probability of identifiability of a random
graph in such a scenario.

Theorem 7: Let graph G(V, E) be a acyclic, directed and
connected graph with two nodes s ∈ V and d ∈ V as
source and destination respectively. If each intermediate node
j ∈ V −{s, d} choose their NC coefficients uniformly from the
elements of F2q , then the probability that all links in G(V,E)
are identifiable is bounded from below by 1 − |E|(|E| +
1)( 1

2q )M

Proof : See Appendix.

D. Multi-source, Multi-destination Networks

In previous sections, we established a novel linear network
coding based approach which guarantees identifiability of a
logical network but using probes between only a single source-
destination pair. It may be possible to send probes between an
arbitrary number of sources and destinations; the identifiability
of a network in such scenarios is discussed next.

For a logical network G(V, E) with sets S ⊂ V and
D ⊂ V of sources and destinations, respectively, one approach
to locate a congested link inside G is to pick any source-
destination pair (s, d) ∈ S ×D, and look at the identifiability
of the corresponding subgraph. Denote the resulting subgraph
by G(s,d). Clearly, If all G(s,d), (s, d) ∈ S×D, are identifiable
then G is identifiable. However the inverse of this statement is
not true. Surprisingly, it is even possible that none of G(s,d) are
identifiable but still G(V,E) is identifiable. In practice, many
sub-graphs are often individually un-identifiable, and hence
this approach is not very useful.

As an example, consider the network in Figure 8. In this
graph, there are two sources, S1 and S2, and one destination
D. Therefore there are two subgraphs, G(S1,D) and G(S2,D)

which are depicted in Figure 9. Both G(S1,D) and G(S2,D)

have intermediate nodes with degree two which make them
individually unidentifiable. However, note that we have access
to both S1 and S2 simultaneously and consequently we may
consider the pair as a supper node as presented in Figure 10 .
Hence, a multi-source multi-destination network can be stud-
ied as an equivalent single source, single destination network
by substituting set of source and destinations with a single
super node source and destination, respectively, represented by
the new graph G′(V,E). It follows that if G′ is identifiable
(unidentifiable), then so is G because every edge in G has
1:1 correspondence with an edge in G′. Therefore, results in
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Fig. 8. A two source one destination network

(a) (b)
Fig. 9. One way to identify a multi-source multi-destination network is to
look at each pair of source-destination combination and identify their corre-
sponding subgraph (a)G(S1,D) for source S1 and destination D (b)G(S2,D)
for source S2 and destination D

previous section may be extended to a multi-source multi-
destination network G(V, E) in this way.

III. NETWORKS WITH FINITE DELAYS

Given an acyclic network with delay, we can either operate
the network in a continuous mode (where information is con-
tinuously injected into the network) or with burst mode. In the
former, the same injected information can take differet routes
causing different delays through the network. Koetter et al. in
[14] treat this case by using memory at the receiver node(s).
In burst-oriented mode, each node transmits information on
an outgoing link only if an input has been observed on all
incoming links or a timer times out. This approach is taken
by Li et al. [15], and leads to a situation where a network
with delay can be thought of being equivalent to a delay-free
network and the results in previous subsection therefore apply.
We use this method jointly with the buffering model proposed
in [17], where an index called generation number is added
to header of packets to distinguish between packets sent in
successive time slots.

Let τd(l) be the delay of link l when it is not congested.
In that case, a packet traversing over path P i(d), defined

Fig. 10. In multi-source multi-destination network, sources S can be though
of a super node. Similarly set of destinations D can be seen as a super node.

Fig. 11. waiting time of node n4 is: τw(n4) = maxi=1,2,3{τw(ni) +
τd(li)}.

in Section II-B, encounters net delay of
∑

l∈P i(d) τd(l). We
assume that the processing time in each node is negligible. We
define Pmax(v) as the longest path between source and node
v ∈ V :

Pmax(v) ∈ P(v) and |Pmax(v)| ≥ |P j(v)| (22)

Let τw(v) be the wait time of node v, i.e. the amount of time
node v has to wait before combining the received packets.
In the other words, at the start of each time slot (every T
seconds), node v ∈ V − {s} waits for τw(v), and then
linearly combines all the received packets in that duration
and broadcasts the result on all of its outgoing links. Packets
received after τw(v) and before the start of the next time slot
are dropped.

The waiting time of each node linearly depends on the
following two parameters: 1- waiting time of its neighbors
from which it receives packets, and 2- delays of its incoming
links. This dependency can be written as below(see Figure
11):

τw(v) = max
{l∈E:v=d(l)}

{τd(l) + τw(o(l))} (23)

where o(l) and d(l) represent origin and destination of link
l ∈ E, respectively.

If the delay caused by congestion (which is ideally defined
to be infinite) is greater than waiting time at the destination,
the above buffering renders the delay network equivalent to a
delay-free network. Note that by definition of waiting time at
each node, if the congestion delay exceeds the waiting time at
destination, it is greater than the waiting time of each interior
node.

IV. SIMULATION RESULTS

In this Section we describe our linear network coding sim-
ulator constructed within OPNETTM14.5 aided by Matlab 7.1
that is used for finite field calculations necessary for network
coding. The simulation results from applying the proposed link
failure monitoring scheme to the network in Figure 2 (which
is not identifiable by end-to-end measurements) is presented.
Finally, we apply the method to the network graph for the
University of Washington’s Electrical Engineering department
network of servers and present identifiability results.

A. Simulation Environment

Ours is the first known implementation of Network Coding
(NC) within OPNET. OPNET was selected because of its
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wide acceptance as a network modeling tool within both the
academic and commercial communities [23]. To implement
network coding in OPNET, the primary need was a method
for queueing packets within each router to account for variable
transmission and reception times, and to ensure that packets
were combined correctly. The routers model are modified
to be able to distinguish between non-network coded and
network coded packets through the use of a flag bit within
the UDP header of received packets; thereafter, the intercepted
NC (network-coded) packets are sent for separate processing
while the non-NC packets are processed normally. In addition,
because of the inherent necessity of network coding to operate
on unidirectional links, each interface within a router model
is designated as a SEND or RECEIVE interface only for
the network coded packets while operating regularly with
non-network coded packets (Figure 13). For interfaces which
only SEND NC packets, any received NC packets were
discarded. Conversely, the RECEIVE interfaces intercepted
and processed the NC packets.

Network coding - by definition- is intended for implemen-
tation in Layer 3, over IP frames. For the purposes of this
simulation, it was not necessary to implement those extensive
features; rather it was convenient to develop an implementation
which takes advantage of pre-existing OPNET functionality.
Therefore, we employ network coding at transport layer (in-
stead of IP layer) largely for convenience - it readily allows
adding hidden data within the TCP/UDP frame in OPNET,
which is invisible to the end-user and to the simulation
statistics [24]. As mentioned in section II, any binary vector
of length q, can be interpreted as an element in F2q , the finite
field with 2q elements. In our network coding implementation,
we assign a q-bit field called LNC field within the TCP/UDP
header, for linear network coding. Only the contents in LNC
field is used for network coding operation. In addition, a 1-
bit flag within TCP/UDP header determines if the packet is
a network coding packet. Once a router receives a packet, it
identifies the packet type by looking at the 1-bit flag embedded
in TCP/UDP header. If the packet is a network-coded packet,
the data in LNC field is extracted and queued at a buffer for
a predetermined amount of time (refer to Section III) after
which they are combined and the router clears the buffer.
The result of linear combining is written in LNC field of the
outgoing packet which is forwarded on all of the outgoing
links via unidirectional broadcast. Note that this network-
coding approach is different from the bidirectional physical
layer broadcast as described in Section II.

To simulate congestion within a link, the identified NC
packets were either dropped or significantly delayed. Our
implementation thus only affects the NC packets, and was
transparent to all non-NC coded packets. Since NC involves
finite field calculations which is not explicitly supported in
OPNET, we implemented the Matlab API within OPNET [25]
to use the Galois Field functions within Matlab’s Communi-
cations Toolbox.

B. Validation
Figure 14 demonstrates a test scenario that was run within

OPNET to validate our findings - this topology (same as in

Fig. 12. OPNET implementation of proposed link failure monitoring for
network in Figure 2 which is not identifiable by end-to-end measurements

Fig. 13. An example of OPNET Network Coding router node model.
Interface 0, 2, and 3 are SEND interfaces, while Interface 1 is a RECEIVE
interface

Figure 2) is not identifiable using end-to-end probe monitoring.
The arrows indicate the network coding graph which overlays
the 100 Mbps Full Duplex connection between routers. Linear
NC coefficient assigned to each link - γl in Eq. (3)- are shown
in a box next to the link. Table III presents received values
at destination for different link congestion states when the
training sequence given by elements of matrix A is used; it is
the lookup table used by destination (node 5) to identify any
congested link in the network.

A =




1 1 1 2 2
1 1 2 1 1
1 1 3 3 3


 (24)

Further tests of our approach was conducted on a larger
graph resembling that of the University of Washington’s
Electrical Engineering network shown in Figure 15. Thirteen
subnets (represented by the numbers 1-13) are all connected
through Full Duplex Ethernet links to backbone routers (rep-
resented as A, B, C and D), which then connect to the rest of
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Congested link None l1 l2 l3 l4 l5 l6 l7 l8
1st time slot 2 0 0 0 3 3 1 0 1
2nd time slot 0 2 3 1 1 3 3 1 2
3rd time slot 0 2 1 3 1 2 3 2 1

TABLE III
SYMBOLS RECEIVED AT DESTINATION FOR TOPOLOGY IN FIGURE 14

WITH TRAINING SEQUENCE GIVEN IN EQ. (24)

campus. Figure 15-(a) depicts the network coding coefficients
of each node and the training sequence used is given below.

A =
[

5 5 2 5 2 1 5 3 5 4 3 6 7
4 7 4 1 2 7 7 1 2 2 6 4 2

]

Figure 15-(b) shows the received symbols at destination
(node A) for different link congestion scenarios. Symbols next
to each link represent values at the destination when that
link is congested. Destination node A uses these symbols to
uniquely locate any congested link in the network; i.e. UW
EE network is seen to be identifiable under proposed network
coding monitoring.

V. CONCLUSION

This work has presented a novel approach to link status
monitoring based on a deterministic approach that exploits
linear network coding at the internal nodes in a network.
The key problem of identifiability for such approaches was
highlighted and various insights provided regarding this con-
cept. New sufficient conditions were derived for successfully
identifying a congested link in any logical network, and trade-
offs between length of training slots and size of the network
coding alphabet established. Finally, the method is verified by
implementation within OPNET to confirm the validity of the
claims.

APPENDIX A
FINITE FIELD DEFINITIONS

For completeness, we provide a summary of the basic facts
concerning finite (Galois) fields, over which the network code
is defined. A field with 2n elements, denoted by F2n , is a
finite field (the extension finite field) with elements represented
as polynomials of degree strictly less than n over F2; i.e.
elements of F2n have the form an−1x

n−1+an−2x
n−2+...+a0

where ai ∈ F2, the binary field. Thus the four elements of
F22 can be represented as {0, 1, x, x + 1}. However, it is
conventional to express the elements of F2n by an equivalent
n bit binary representation. For example, elements in F22 can
be represented as {00, 01, 10, 11} or {0, 1, 2, 3}.

By definition, a finite field supports two operations; for
F2, these are modulo-2 addition (XOR) and multiplication
(AND). These operations (Addition and multiplication) in
extension fields F2n is best understood in terms of polynomial
addition and multiplication which are performed modulo R(x)
where R(x) is an irreducible polynomial of degree n over
F2. The addition of two polynomials P (x) and Q(x) is done
as usual; multiplication may be done as follows: compute

+ 0 1 2 3
0 0 1 2 3
1 1 0 3 2
2 2 3 0 1
3 3 2 1 0

* 0 1 2 3
0 0 0 0 0
1 0 1 2 3
2 0 2 3 1
3 0 3 1 2

TABLE IV
ADDITION AND MULTIPLICATION IN F22 . IRREDUCIBLE POLYNOMIAL IS

R(x) = x2 + x + 1

+ 0 1 2 3 4 5 6 7
0 0 1 2 3 0 1 2 3
1 1 0 3 2 5 4 7 6
2 2 3 0 1 6 7 4 5
3 3 2 1 0 7 6 5 4
4 4 5 6 7 0 1 2 3
5 5 4 7 6 1 0 3 2
6 6 7 4 5 2 3 0 1
7 7 6 5 4 3 2 1 0

* 0 1 2 3 4 5 6 7
0 0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6 7
2 0 2 4 6 3 1 7 5
3 0 3 6 5 7 4 1 2
4 0 4 3 7 6 2 5 1
5 0 5 1 4 2 7 3 6
6 0 6 7 1 5 3 2 4
7 0 7 5 2 1 6 4 3

TABLE V
ADDITION AND MULTIPLICATION IN F23 . IRREDUCIBLE POLYNOMIAL IS

R(x) = x3 + x + 1

W (x) = P (x).Q(x) as usual, then compute the remainder
modulo R(x), using polynomial long division.

For example, consider two elements in F28 , which has an
irreducible polynomial as x8 +x4 +x3 +x+1 - (001010011)
and (011001010). They can also be represented in polynomial
form as x6 + x4 + x + 1 and x7 + x6 + x3 + x respectively.
The sum of these two symbols results in x7 + x4 + x3 + 1
by rules of modulo-2. Multiplication of these two symbols is
calculated as in Figure 16.

It is convenient to have a lookup table for the two opera-
tions of summation and multiplication for an extension field
(especially when implementation is in concern). Table IV and
V provide these for F22 and F23 , respectively.

APPENDIX B
PROOF OF THEOREMS

Proof of theorem 2: Let e1, e2, ..., eK be K outgoing links of
source s. Recall that Pei is defined as set of paths from source
to destination that have ei in common and Pe1(d), ...,PeK

(d)
is a K-partition of P(d). Let P k

ei
represent the k-th element

of Pei(d); i.e. P k
ei

is the k-th path among all paths from s
to d passing through ei. Let Ni = |Pei |, total number of
paths from source to destination starting at ei. Consider the
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(a) (b) (c)
Fig. 14. Topology given in Figure 2 which is not identifiable using end-to-end measuring (a)Network Coefficient values in F22 (γl) (b)Snapshot of network
coding simulation (c)Snapshot of simulation when l3 is congested.

(a) (b)
Fig. 15. (a) UW Electrical Engineering network topology, network coding coefficients in F23 (γl) and training sequence (b) numbers next to each link
shows received symbols at destination when the link is congested.

(x6 + x4 + x + 1)(x7 + x6 + x3 + x) modulo x8 + x4 + x3 + x + 1 = (25)
x13 + x12 + x11 + x10 + x9 + x8 + x6 + x5 + x4 + x3 + x2 + x modulo x8 + x4 + x3 + x + 1 = 1

Fig. 16. An example of multiplication of two elements in F28 with irreducible polynomial x8 + x4 + x3 + x + 1

following definitions:

βk,ei =
∏

j∈P k
ei

γj (26)

βei
= [βk,ei ]

Ni

k=1 (27)

(β(G))T = [βei ]
K
i=1 (28)

βk,ei is the product of linear network coding coefficients of
all links on k-th path in Pei . Vector β(G) defined above is a
rearranged version of β(G) in (11). Let βk,ei be elements in
field F2q with the following property for each i = 1, . . . , K:

Ni∑

k=1

ζkβk,ei = 0 ⇔ ζk = 0, ∀k (29)

We shall show that β(G) with above property satisfies both
conditions in Theorem 2.

Since in the extended binary field F2q addition and subtrac-
tion are equivalent, Aβ(G) 6= Aβ(Gl) implies A( β(G) +
β(Gl) ) 6= 0. Define β̃(Gl) = β(G) + β(Gl). According to
(13), β̃(Gl) can be written as

β̃k,ei =

{
βk,ei if l ∈ P k

ei
(d)

0 o.w.
(30)

β̃ei
= [β̃k,ei ]

Ni

k=1 (31)

β̃(Gl) = [β̃ei
]Ki=1 (32)

where β̃(Gl) contains network coding coefficient of the
paths which go through link l and is zero otherwise. According
to broadcast nature of network coding, there is a path from
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source to destination which goes through link l. Therefore,
there is at least one βk,ei

which is not zero, say βk∗,ei∗ 6= 0.
On the other hand, ∀i ∈ {1, 2, ..., K} βk,ei

, k = 1, 2, ..., Ni

are selected as in (29). Now, define matrix A = [ai,j ] as:

ai,j =

{
1

∑j−1
k=1 Nk < i ≤ ∑j

k=1 Nk

0 o.w.
(33)

corresponding to the following - in time slot i, source sends
symbol 1 ∈ F2q over ith outgoing link and zero over others.
An example of matrix A for network in Figure 7 is given
below. As it is explained in Example 2, for that network we
have N = 5, K = 3 and N1 = 2, N2 = 1, N3 = 2.

A =




1 1 0 0 0
0 0 1 0 0
0 0 0 1 1




Now let look at the i∗ entry of vector A β̃(Gl). Since in time
slot i∗ source sends 1 over ei∗ and zero otherwise, the i∗ entry
of A β̃(Gl) is calculated as follows:

Ni∗∑

k=1

β̃k,ei∗ (34)

which can be rewritten as

Ni∗∑

k=1

ζkβk,ei∗ (35)

where ζk is one if β̃k,ei∗ = βk,ei∗ and is zero otherwise. Since
β̃k∗,ei∗ 6= 0, or equivalently β̃k∗,ei∗ = βk∗,ei∗ (according to
Eq. (32), ∀i, k β̃k,ei is either zero or equal βk,ei), in Eq. (35),
ζk∗ 6= 0. For that reason, Eq. (29) guarantees that Eq. (35) is
not zero which means i∗ entry of A β̃(Gl) is not zero and
consequently A β̃(Gl) 6= 0

Now we prove matrix A defined in (33) and β defined in
(29) also satisfy the second condition of the theorem. With
the same argument, it is sufficient to show that A(β(Gl1) +
β(Gl2)) 6= 0. Let β̃(Gl1 , Gl2) = β(Gl1) + β(Gl2), using
definition of β(Gl) in (13) it is easily seen that β̃(Gl1 , Gl2)
has the following structure:

β̃k,ei =





0 if (l1 /∈ P i(d) and l2 /∈ P i(d)) or
(l1 ∈ P i(d) and l2 ∈ P i(d))

βk,ei(G) o.w.

(36)

β̃ei = [β̃k,ei ]
Ni

k=1 (37)

β̃(Gl1 , Gl2) = [β̃ei ]
i=K
i=1 (38)

Basically, β̃(Gl1 , Gl2) is non-zero over paths which go
through one of the links but not both. On the other hand, we
have assumed that the network is logical which means there
is a path which goes through one of l1 or l2 and not both of
them. Hence, β̃(Gl1 , Gl2) has at least one non-zero element,
say β̃k∗,ei∗ 6= 0. By definition of β̃k,ei , if β̃k∗,ei∗ is not zero it
is equal βk,ei . By the same argument as before the i∗ entry of
matrix production Aβ̃(Gl1 , Gl2) is not zero and consequently
Aβ̃(Gl1 , Gl2) 6= 0 which implies Aβ(Gl1) 6= Aβ(Gl2).

¥

Proof of Theorem 4: Let H = {H1,H2, ..., HM} be a
M -partition of Z = {1, 2, . . . , K}; i.e. Z = ∪M

i=1Hi and
Hi ∩ Hj = φ , i 6= j. Suppose for each j, 1 ≤ j ≤ M , NC
coefficients βk,ei , k = 1, ..., Ni and i ∈ Hj , have following
property:

∑

i∈Hj

Ni∑

k=1

ζi,kβk,ei
= 0 ⇔ ζi,k=0, i ∈ Hj , k = 1, 2, ..., Ni (39)

Now, define matrix A = [ai,j ] as the following; In time
slot j, source sends symbol 1 ∈ F2q over ith outgoing link
where i ∈ Hj and zero over others. By same argument as
given in proof of theorem 2, matrix A satisfies the following
two inequalities:

• Aβ(Gl) 6= Aβ,∀l1 ∈ E
• Aβ(Gl1) 6= Aβ(Gl2), ∀l1, l2 ∈ E

which means G(V, E) is identifiable using A as training
sequence.

In finite filed F2q there are q numbers ϕk, k = 1, . . . , q
such that [26]

q∑

k=1

ζkϕk = 0 ⇔ ζk = 0,∀k (40)

This property and the condition given in Eq. (39) for
βk,ei contribute to the fact that, for a given H , G(V,E)
is identifiable if q ≥ ∑

i∈Hj
Ni for all 1 ≤ j ≤ K or

equivalently q ≥ maxj

∑
i∈Hj

Ni. In the other words, for a
given partition of Z, G(V, E) is identifiable using M time
slots and q bits for NC coefficients if q ≥ maxj

∑
i∈Hj

Ni.
Therefore, G(V, E) is identifiable if q is the smallest number
amount all partitions of Z; i.e. if q satisfies the following min-
max inequality:

q ≥ min
{Hi,i=1,...,M}∈ZM

max
i

∑

j∈Hi

Nj (41)

¥

Proof of Theorem 7:
We prove the theorem by using Schwartz-Zippel

Lemma[27], given as follows:
Schwartz-Zippel Lemma: If f, g are two different m-variate

polynomial of degree at most d over F, then P (f = g) ≤ d
|F| .

There is a status ambiguity between link l1 ∈ E and l2 ∈ E
if received symbols at the destination in case of l1 congestion
be the same as received symbols when l2 is congested, yl1 =
yl2 . Using above lemma this can happen with the following
probability:
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P (yl1 = yl2) (42)
= P (Aβ(Gl1) = Aβ(Gl2))
= P (αT [i]β(Gl1) = αT [i]β(Gl2), i = 1, 2...,M)

=
M∏

i=1

P (αT [i]β(Gl1) = αT [i]β(Gl2))

≤
M∏

i=1

1
2q

= (
1
2q

)M

where in the last inequality we use Schwartz-Zippel lemma
where d = 1 and |F2q | = 2q .

link l1 ∈ E is not identifiable if there is a link l2 ∈ E∪{φ}
({φ} stands for no congestion in the network) such that there
is status ambiguity between them. The probability that l1 is
not identifiable is calculated as below:

P (l1 is not identifiable) = P (yl1 = yl2 , l2 ∈ Ẽ) (43)

=
∑

l2∈Ẽ

P (yl1 = yl2)

≤ (|E|+ 1)(
1
2q

)M

where Ẽ = E ∪ {φ}.
Graph G(V,E) is identifiable if all links are identifiable.

Using above probabilities for identifiability of link l1 ∈ E,
probability of G be identifiable is given as follows:

P (G is identifiability) = 1− P (G is not identifiability)(44)
= 1− P (l is not identifiable, l ∈ E)

= 1−
∑

l∈E

P (l is not identifiable)

≥ 1−
∑

l∈E

(|E|+ 1)(
1
2q

)M

= 1− |E|(|E|+ 1)(
1
2q

)M

¥

APPENDIX C
GLOSSARY

• γl is the network coding coefficient of the link l
• P(v) collection of all paths from s to v
• P i(v) is the i-th element of P(v) or equivalently i-th

path between s and v
• N is the total number of paths from source to destination
• K number of outgoing links of the source
• M number of time slots in which source sends symbols

to destination
• ek is the k-th outgoing link of source
• βi(G) is the product of LNC coefficients of all links lying

on the i-th path from source to destination in network G;
i.e. P i(d)

• βi(Gl) is the product of LNC coefficients of all links
lying on the i-th path from source to destination in
network Gl, edge deleted subgraph of G.

• αk[n] is the symbol sent by source s over the k-th
outgoing link, ek, in time slot n.

• y[n] received symbols at destination in time slot n in
network G

• yl[n] received symbols at destination in time slot n in
network Gl

• β(G) is the total network coding vector of graph G. Its
i-th entry is βi(G).

• AM×N is a M×N matrix whose n-th row is the training
symbols sent in time slot n

• yM×1 received symbols at destination in M time slots in
network G

• yM×1 received symbols at destination in M time slots in
network Gl
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